Microstructure Evolution in High Purity Aluminum Single Crystal Processed by Equal Channel Angular Pressing (ECAP)

نویسندگان

  • Jinfang Dong
  • Qing Dong
  • Yongbing Dai
  • Hui Xing
  • Yanfeng Han
  • Jianbo Ma
  • Jiao Zhang
  • Jun Wang
  • Baode Sun
چکیده

Aluminum single crystal with 99.999% purity was deformed at room temperature by equal channel angular pressing (ECAP) up to 16 passes. Grain size and misorientation of processed samples were quantitatively characterized by TEM and EBSD. The results show that the refinement efficiency of high purity aluminum single crystal was poor in the initial stage. Extrusion by fewer ECAP passes (n ≤ 8) resulted in only elongated grains containing a large number of subgrains and small misorientations between grains. Stable microstructures of nearly equiaxed grains with high misorientations were obtained by 15 passages, indicating that the initial extremely coarse grains and highly uniform grain orientation are not conducive to the accumulation of strain energy. The initial state of high purity aluminum has a significant effect on the refining efficiency of the ECAP process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Equal Channel Angular Pressing and Annealing Treatment on the Evolution of Microstructure in AlMg0.7Si Aluminum Alloy

In this research, samples of AlMg0.7Si aluminum alloy are deformed up to three passes using equal channel angular pressing (ECAP). Formation of a sub-micron structure after three passes of ECAP is demonstrated. Microstructural stability of the samples is investigated at temperatures of 300-500 °C. At 300 °C, fine recrystallized structure forms after 10 min which remains stable when the ...

متن کامل

Equal Channel Angular Pressing to Produce Ultrafine Pure Copper with Excellent Electrical and Mechanical Properties

In this article, commercially pure copper samples were severely deformed by equal channel angular pressing (ECAP) up to eight passes at room temperature. The effects of severe plastic deformation on the microstructure, mechanical properties, and electrical conductivity of the copper were investigated. The microstructure evolution was followed by optical microscope and field emission scanning el...

متن کامل

Evolution of Texture and Grain Size during Equal Channel Angular Extrusion of Pure Copper and 6012 Aluminum

Among different SPD techniques, Equal channel Angular Pressing has attracted the most attentions, because of applying large strain to solid bulk materials. In this research, ECAP process up to 6 passes was carried out on a pure copper and a 6012 Al-Mg-Si alloy with BC route in ECAP dies with Φ=120 and Ψ=20 and diameter of 20and 10 millimeter respectively. Moreover, X-ray diffraction (XRD) syste...

متن کامل

Evolution of Texture and Grain Size during Equal Channel Angular Extrusion of Pure Copper and 6012 Aluminum

Among different SPD techniques, Equal channel Angular Pressing has attracted the most attentions, because of applying large strain to solid bulk materials. In this research, ECAP process up to 6 passes was carried out on a pure copper and a 6012 Al-Mg-Si alloy with BC route in ECAP dies with Φ=120 and Ψ=20 and diameter of 20and 10 millimeter respectively. Moreover, X-ray diffraction (XRD) syste...

متن کامل

Hot and Cold Tensile Behavior of Al 6061 Produced by Equal Channel Angular Pressing and Subsequent Cold Rolling

The full annealing AA6061 aluminum alloy was subjected to severe plastic deformationvia the combination of equal channel angular pressing (ECAP) and cold rolling (CR) in order torefine its microstructure and to improve its mechanical properties. According to the results of hotand cold tensile tests, the combination of ECAP and CR significantly affected the final strengthand ductility of studied...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017